A Detailed Description of the VLSI-PLM Instruction Set:
A WAM Based Processor for Prolog

Bruce K. Holmer
holmer@ernie.berkeley.edu

Aquarius Group
Computer Science Division
University of Califomia, Berkeley

ABSTRACT

This document describes the VLSI-PLM instruction set and includes small pro-
grams to test details of its implementation. The VLSI-PLM is a single chip implementa-
tion of the PLM, a WAM based instruction set for the execution of Prolog. The instruc-
tion set is described using C-like code based on the actual microcode of the VLSI-PLM.
The test programs are a collection of simple Prolog programs which were used to debug
the microcode. This report complements the report of Fagin and Dobry, The Berkeley
PLM Instruction Set: An Instruction Set for Prolog.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DoD) under Contract No.
NO000014-88-K-0579. Support was also received from NCR Corporation. Equipment for the project was provided by
DEC, NCR, and Apolio.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1989 2. REPORT TYPE 00-00-1989 to 00-00-1989
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Detailed Description of the VLSI-PLM Instruction Set: A WAM Based | .\t NUMBER

Processor for Prolog
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Thisdocument describesthe VL SI-PLM instruction set and includes small programsto test details of its
implementation. The VLSI-PLM isasingle chip implementation of the PLM, a WAM based instruction set
for the execution of Prolog. Theinstruction set is described using C-like code based on the actual
microcode of the VLSI-PLM. Thetest programs are a collection of simple Prolog programswhich were
used to debug the microcode. Thisreport complimentsthereport of Fagin and Dobry, The Berkeley PLM
Instruction Set: An Instruction Set for Prolog.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 38
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Detailed Description of the VLSI-PLM Instruction Set

Bruce K. Holmer
Aquarius Group
Computer Science Division
University of California, Berkeley

1. Introduction

This document describes the VLSI-PLM instruction set and includes small programs to test details of
its implementation.

Given below is a set of C code that describes the actions of each VLSI-PLM instruction. It is essen-
tially a level one simulator presented instruction by instruction. 1 assume that the reader has on hand a
copy of The Berkeley PLM Instruction Set: An Instruction Set for Prolog [FaDo). Warren's original
definition of the WAM [War] and Dobry’s thesis [Dob] are also very belpful. Material in these documents
are not duplicated here unless needed for completeness or to point out corrections.

The code is not a direct transliteration of the VLSI-PLM microcode. I have rearranged operations if
the result is more clear. In the use of C, I have restricted myself to arithmetic and logic operations, assign-
ments, if and switch statements, jumps, and function calls. These roughly correspond to the operations
available on most microarchitectures, and therefore the elemental operations are less likely to be hidden by
C constructs.

2. Fandamentals

2.1. Registers and Memory Layout
The registers and state bits of the VLSI-PLM are:

P program counter (30-bit byte address)
Cp continuation pointer (return address)
H heap pointer

B cheoice point pointer

E envirconment pointer

TR trail pointer

HB heap peinter on backtracking

N nurmber of permanent variables

A0 through A7 eight argument registers

cuT cut bit

MODE mode bit (READ or WRITE)

PDL unification push down list pointer
B2 glcobal heap pointer

In [FaDo] the argument registers where specified with either Ai or Xi. In this document, I will use only
Ai and number the registers starting from 0 ([FaDo] and the PLM compiler both start the numbering from
1). Similarly, Yi addressing starts from zero (rather than one as in the compiler). I have chosen this con-
vention since it matches the actual value used in the argument byte of the machine instruction.

March 1, 1989

-2.

The program counter (P) is not contained in the VLSI-PLM, but instead is kept in the external
instruction prefetch unit. The VLSI-PLM can request a new value for P by either sending the entire new
30-bit value (as in proceed) or by sending an 8-bit offset (as in switch_on_term). The current
preferch unit treats offsets as positive only (as shown in the pseudo code), however, with a change to the
prefetch unit (and assembler) this could be changed to signed offsets.

Choice point structure:

<==-- B (points at one position beyond end of choice pt)

‘o

Ccp

A7
A6
A5
A4
A3

Al | higher addresses
A0 I

Structure of environment:
Yn
Y1l
YO === E
N
Cp

coT | B
E

Structure of trail:

VALUE !

NONVAR | ADDR | address/value pair from setarg/3
VAR | X normal trail entries

VAR | Y

=== TR

Unification of pested structures requires & push down list. On the VLSI-PLM this is supplied as an
on-chip circular buffer (with automatic spill to memory on overflow). This mechanism is not included in
the following pseudo-code since it would overly complicate the unify algorithm. Instead, I assume the
existence of two arrays, PDL]1 and PDLr, and an index pointer, PDL. Since a very small fraction of the
total execution time is spent in the general unify routine, these arrays could be placed on top of the

March 1, 1989

-3.

environment or heap for the duration of the unify routine with little loss of performance.

In the pseudo code, the comparison ADDRESS == Yi is often used. This does not refer to real
registers or state bits, but refiects the decoding of the opcode of the current instruction. If the opcode indi-
cates that the addressing mode refers to a register (Xi), then this test would be false. Otherwise, if the
addressing mode refers to a permanent variabie (Y3), then the test succeeds.

22. Cdr coding

The primary rule for handling cdr bits is: the cdr bit is associated with the memory location, not the
data value. Cdr bits (that have meaning) can appear only on the heap and trail, and can only be created by
the unify nil and unify cdr instructions. The cdr bit of a stack variable has no meaning, since
lists and structures are not built on the stack. Cdr bits can be removed from a given location only when that
location is reclaimed on backtracking. Binding and detrailing do not change the value of the cdr bit. Dur-
ing unification the cdr bit does not affect the match between two constants.

The mixture of cdr coding and variable dereferencing gives rise a subtle point. The value (and tag)
of a variable is determined by the data at the end of its dereference chain. However, the cdr bit of the vari-
able itself must be used (rather than the cdr bit of the dereferenced value).

The Xenologic X1 microcode takes the position that the cdr bit of data in an A register has no mean-
ing, and therefore is always cleared. This was not done in the VLSI-PLM, since the non-WAM ipstruc-
tions allow the cdr bit to be manipulated by assembly code.

2.3. Instruction Formats

Although Dobry’s thesis contains explicit information about instruction formats, a brief summary of
instruction opcodes and arguments is given here. All opcodes are a single byte. Instructions have up to
three arguments, the first is either one or four bytes and the next two are always one byte.

Instruction Opcode (hex)
allocate 00
deallocate 01
proceed 80
cut 05
trust_me_else 0b
fail 82
unify_nil 02
nop 04
hatt 06
reset 81
Instructions with no arguments

March 1, 1989

Instruction Opcode Argl Arg2
switch_on_constant do table address hash mask
switch_on_structure dl
try 45 destination address
retry 46
trust 47
try_me_else 41 continuation address
retry_me_else 42
cutd 49 continuation address
execute 44 destination address
jumnp 4c
call 54 destination address new N
get_constant 50 constant A register
put_constant 52
get_structure 51 functor A register
ut_structure 53
unify_constant 40 constant
Instructions with four-byte Argl
Escape Opcode Arpl
External (arity 0) 4a 00000100
External (arity 1) 4a 00000101
External (arity 2) 4a 00000102
External (arity 3-7) 4a 00000103
Additional regs dumped
External (arity 0) 4a 00000180
External (arity 1) 4a 00000181
External (arity 2) 4a 00000182
External (arity 3-7) 4a 00000183
X7t H2 4a 00000060
H2 t0 X7 4a 00000061
X7t10H 4a 00000062
Hto X7 4a 00000063
X708 4a 00000064
St X7 4a 00000065
X710B 4a 00000066
B 1w X7 4a 00000067
X7t0E 4a 00000068
Eto X7 4a 00000069
X710 TR 4a 0000006a
TR to X7 4a 0000006b
Escape instructions (Argl is four bytes)

March 1, 1989

Instruction Opcode Argl | Arg2 Arg3
switch_on_term b4 constant offset list offset structure offset
get_nil 10 A register
get_list 11
put_nil 12
ut_list 13
get_variable 20 A register A register
get_value 21
put_variable 22
put_value 23
get_variable 28 Y index A register
get_value 29
put_variable 2a
~put_value 2b
ut_unsafe_value ! 2c Y index A register
unify_variable 15 A register
unify_value 17 |
wnify_cdr 14 |
unify_variable 1d Y index
unify_value 1f
unify_cdr 1c
unify_void 18 count |
deref | le A register
add 24 A register source | A register destination
sub 25
and 26
or 27
eor 2d
mault 2e
memread 34 A reg (addr base) | A register destination positive offset
memwrite 35 A reg (addr base) A register source positive offset
coderead 16 A reg (address)
codewrite 19 A reg (address)
Jeq b5 A register A register positive branch offset
jit b6
jle b7
jumpxn 90 A register
loadn la pew N

Instructions with one-byte Argl

3. Details of Pseudo Code

Constants and user visible registers are given names consisting of all capital letters. The constants
VAR, CON, LST, and STR represent the tag values for variables, constants, lists, and structures, respec-
tively. Temporary variables are usually specified by lower case, e.g. t0, valtO, etc. These tem-
poraries do not necessarily correspond to scratch registers in the microarchitecture.

In the VLSI-PLM, logic operations and equality tests are 32-bit. Arithmetic operations and inequal-
ity tests operate on only the value field (28 bits). The pseudo code below adopts the usual meaning of these
operators in C (working on 32-bit signed integers). Explicit use of value along with an operation or

March 1, 1989

-6-

comparison signifies the fact that that operation or comparison is 28-bit (thus the comparisons are
unsigned).

There are several basic operations that often occur. I define them here in terms of arithmetic and
logic operations, but the microarchitecture directly supports them.

tag(t0)
{
return (t0 >> 30) & 3; /* return bits <31:30> */
}
cdr (t0)
{
return (t0 >> 29) & 1; /* return bit <29> */
}
value (t0)
{
return t0 & OxOfffffff; /* return bits <27:0> */

}

construct (tag, cdr, val)
{ /* gc bit is cleared */
t0 = (tag << 30) & 0xc0000000;
tl = (cdr << 29) & 0x20000000;
t2 = val & OxOfffffff;
return (t0 | t1 | t2);

In addition, the function memread (t0) performs a memory read from the address given by
value (t0) , and returns the entire 32 bits at this address. The function memwrite (t0, t1l) per-
forms a memory write to the address given by value (t0), storing the entire 32 bits of t1 at this
address. The functions coderead and codewrite are similar, but read and write to the code address
space (which is separate from the data address space).

4. Basic Operations

4.1. Dereference

This dereference routine assumes that t O is a variable. The VLSI-PLM has a conditional micro-
subroutine branch based on the tag value, and so this is the natural thing to do. An alternative is to test £ 0
in dereference and remrn immediately if the t 0 is not a variable.

One must beware of the case when the last element of a dereference chain is an unbound variable,
and it and the previous link (the variable pointing to the unbound variable) have differing cdr bits. The
code given here is conservative and will dereference an extra time in this case.

March 1, 1989

dereference (t0)

{
/* assumes that on entry: tag(t0) == VAR */

Ll:
t]l = memread(t0);
if (t0 == tl1 || tag(tl) != VAR) return tl;
t0 = t1;
goto L1;
}
42, Trail

It is important that the entire 32 bits of the variable be written to the trail stack, since the detrail rou-
tine (in fail) restores the value by a 32-bit transfer.

Although the trail grows toward low memory, the trail pointer, TR, points at the next available loca-
tion (ratber than the top entry of the stack).

trail (£0)
{
/* assumes that t0 is the unbound variable to be trailed */
valt0 = value (t0);

if ((valt0 < value(B) && valtO > value(H)) || /* unbnd var on stack */
valt0 < value (HB)) { /* unbnd var on heap */
memwrite (TR, t0);
TRe=;

4.3. Fail

The VLSI-PLM does not have variable sized choice points, so all of the argument registers are
saved, even if it is not necessary. This makes garbage collection harder, since one does not know which
values are valid starting points for marking. A possible solution is to store tbe number of valid argument
registers in X7 ’s position (X7 is used by tbe compiler only as a temporary).

The detrailing done in fail must be done by popping the trail stack. This is important because several
setarg entries may modify the same memory location, and the oldest trail entry should be restored. The
setarg trail entry consists of an address/value pair. The address must have a non-variable tag to dif-
ferentiate it from a normal (unbound variable) entry.

March 1, 1989

fail()

PDL = O;

if (value(B) == value (STKbase)) {
goalfail():
return;

}

newTR = memread(B - 1);

P = memread(B - 2);

CP = memread(B - 3);

E = memread(B - 4);

Al7)] = memread(B - 5);

A[6] = memread(B - 6);

A[5]) = memread(B - 7);

Al4] = memread(B - B):;

A[3] = memread(B - 9);

Al2] = memread(B - 10);

A[l} = memread(B - 11);

A[0] = memread(B ~ 12);

N = memread(B - 13);

H = memread(B - 14);

Ll:

if (value (newTR) == value (TR)) return:

TR++;

t0 = memread (TR);

if (tag(t0) == VAR) {
memwrite (t0, tO); /* normal trail entry */

}] else {
TR++; /* 2 word entry for setarg */
tl = memread(TR);
memwrite (0, tl);

}

goto L1;

§. Indexing Instructions

5.1. Switch on Term

This instruction takes three 8-bit arguments that give the (positive only) branch displacement for the
constant, list, and structure cases. The variable case continues execution with the next statement. The
maximum value for the displacement (255) indicates failure.

March 1, 1989

switch _on_term()
{
t0 = A[OQ];
if (tag(t0) == VAR) t0 = dereference (t0);
switch (tag(t0)) {
case VAR:
return;
case CON:
tl = argl;
break;
case LST:
tl = arg2;
break:;
case STR:
tl = arg3;
break;
}
if (¢l == Oxff) {
fail();
return;
}
P=2P 4+ ¢tl;

82. Switch on Constant and Structure

Both of these instructions take a 28-bit code space word address (argl) which specifies the beginning
location of the hash table, and an 8-bit mask (arg2) which is anded with the constant or functor value as the
hash function.

switch _on_constant ()

{
t0 = A[O];
if (tag(t0) == VAR) t0 = dereference(t0);
switch(t0);

switch_on_structure ()

{

t0 = A[OQ]);
if (tag(t0) == VAR) t0 = dereference(t0);
func = memread (t0); /* functor of structure */

switch(func);

These switch instructions utilize open addressing hashing with linear probing. The functor or con-
stant value is multiplied by two so that consecutive integers will map to consecutive table entries. The hash
function is given by the functor or constant value anded with the mask (arg2).

March 1, 1989

-10-

The hash table consists of two word entries, a value and a code address. If the value entry matches
the value of the constant or functor, then execution proceeds at the code address. The cdr bit of the value
entry is used to denote unused table locations and a valid entry just before an unused location. The value
of an empty entry must be unique (different from all constants and functors) since probing can begin at an
empty entry. Failure occurs when all the table entries have been unsuccessfully checked or if after looping
to the top of the table, the cdr bit of the value is set.

switch (t0)

{
tl = t0 << 1;

/ tl = tl & arg2;
start = argl + tl; /* pointer into hash table */
ptr = start;
Ll:
t2 = coderead(ptr):
if (value(t2) == value(t0)) {
P = coderead(ptr + 1);
return;
}
ptr = ptr + 2;
if (edr(t2) == 0) goto Li;
ptr = argl; /* start over at beginning of table */
L2:
if (ptr >= start) {
£ail();
return;

}

t2 = coderead(ptr);

if (value (t2) == value(t0)) {
P = coderead(ptr + 1):;
return;

}

ptr = ptr + 2;

if (edr(t2) == 0) goto LZ2;

fail();
return;

There are several improvements that can be made with this instruction. The anding of arg2 should be
done before the left shift, aliowing tables with 256 entries. Also, instead of failing when a hash lookup is
unsuccessful, execution should proceed to the next instruction, allowing several switch instructions to be
placed one after another (this is what is done in the X1). This is useful for hash tables with more than 128
entries. In addition, eliminating the code which probes from the beginning of the table would make
modification of the hash table easier during assert and retract Finally, the cdr bit should be set only for
empty entries, eliminating the need for unique values in empty entries. These changes are summarized
below with new pseudo code.

March 1, 1989

-11 -

switch (t0) /* not implemented */
{
tl = t0 & arg2;
tl = tl << 1;
ptr = argl + tl; /* pointer into hash table */

t2 = coderead(ptr):;
if (cdr(t2) == 1) goto L2; /* empty if cdr set */
if (value(t2) == value(t0)) {
P = coderead(ptr + 1);
return;
}
ptr = ptr + 2;
goto L1;

L2:
return; /* if no match, continue with instruction */

/* following the switch */

6. Procedure Control Instructions

61. Try

March 1, 1989

try ()

62. Retry

retry ()
{

63. Trust

trust ()

CUT = 1;

-12-

if (value(E) < value(B)) {
t0 = B;

} else {

t0 = E + N;

}

memwrite (t0,
memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0

memwrite (t0O

B = t0 + 15;
HBE = H;

P = argl;

CUT = 1;

memwrite(B - 2, P);

P = argl;

CUT = 0;
t0 = B;

B = memread(tO

I T S S S e S N U

~ =~

~

-~ =~

W oI D WN W

O R s
B WP o

B);
H);
N);
A[0]);
All)]):
Al2])):
AI3]):
Al4]);
Al5]);
Al6]);
Al7]);
E);
Cp);
P);
TR) ;

- 15);

HBE = memread(t0 - 14);

P = argl;

March 1, 1989

/* not the optimal value for HB */

-13.

The HB register is not updated optimally in the PLM. Whenever choice points are discarded, the
HB register is restored first, and then the choice point is thrown away. What should happen is that the
choice point should be discarded first, and then the HB register loaded from the newly activated choice
point on top of the stack.

The current HB register updating scheme will give correct operation, but will trail more often than
necessary. Fixing the levell simulator reduced the number of trails on the quicksort benchmark by more
than half.

If the last choice point on the stack is discarded, and then the PLM attempts an HB register update,
then the HB register gets loaded with garbage. This is because the HB register is always updated from
the H field of the current choice point; if their are no choice points on the stack then the value obtained in
this way is obviously not meaningful.

However, this doesn’t affect the operation of the PLM, provided the address geperated when the
PLM attempts to update the HB from the nonexistent choice point is accepted by the memory system.
Consider for a moment why this must be so. Only two incorrect actions are possible as a result of an
incorrect HB value: either a value is trailed that should not be, or a value is not trailed that should be. In
either case, the undesirable effects will not be felt until fajlure occurs, and the trail is unwound. However,
the trail section built with the garbage HB value was placed on the trail stack when there was no choice
point, so when failure occurs the PLLM reports top level failure ard quits.

This problem didn’t arise before because the HE register was updated from the last choice point dis-
carded from the stack, thus avoiding a special check for the top of the stack every time a choice point was
discarded to prevent HB from getting a garbage value. (The above comments are originally from Barry
Fagin).

The problem with loading HB with garbage can be eliminated by initializing the choice point stack
with a *‘sentinel’’ choice point. This choice point would contain the initial values of all the stack pointers
and the code address of the routine for goal failure. If this scheme were used, the check B ==
STKbase in fail could be eliminated.

6.4. Try me Else

March 1, 1989

try me_else()

{

6.5. Retry me Else

retry me_else ()

{

.14.-

cUT = 1;
if (value(E) < value (B)) {
t0 = B;
} else {
t0 = E + N;
}
memwrite (tO, B):
memwrite (t0 + 1, H):;
memwrite (t0 + 2, N);:
memwrite(t0 + 3, A{0]):
memwrite (t0 + 4, A[l]));
memwrite (t0 + 5, A[2)):;
memwrite(t0 + 6, A[3]);
memwrite (t0 + 7, A[4]));
memwrite (t0 + 8, A[S5]);
memwrite (tO + 9, A[6]):
memwrite (t0 + 10, A[7]);
memwrite (t0 4+ 11, E);
memwrite (t0 + 12, CP);
memwrite (t0 + 13, argl):
memwrite (t0 + 14, TR):
B = t0 + 15;
HB = H;
CUT = 1;
memwrite(B -~ 2, argl):;

6.6. Trust me Else

trust_me_else ()

{

CUT = 0O;
t0 = B;

B = memread(t0 - 15);
HE = memread (t0 - 14);

March 1, 1989

/* not the optimal value for HB */

6.7. Cut

cut ()

6.8. Cutd

cutd ()

{
Ll:

t0 = memread (E - 3);
B = value(t0);
if (cdr(t0) == 1) ({

B = memread(t0 - 15);
HB = memread (t0 - 14);

t0 = B;
B = memread(t0 - 15);
tl = memread(t0 - 2);

if (tl1 !'= argl) goto Ll;
HB = memread (t0 - 14);

7. Clause Control Instructions

7.1. Proceed

proceed ()

{

P = CP;
CUT = 0;

if (value(CP) == 0) goalsuccess():

/* must get rid of cdr (cut) bit */

/* not the optimal value for HB */

The test for CP being a nuli value could be eliminated if CP is initialized to point to the code for goal

SUCCeSs.

72. Execute

execute ()

{

P = argl;
CUT = O;

March 1, 1989

7.3. Call
call ()
{
CP = P;
P = argl;
N = arg2;
CUT = O;
}
7.4. Allocate

allocate()
{
if (value(E)
t0 = B;
}] else {
t0 = E +
}
memwrite (0,
memwrite (t0 + 1,

memwrite (t0 + 2,

memwrite (t0 + 3,
E=t0 + 4;

7.5. Deallocate

deallocate ()
{

-16-

< value(B)) {

N;

E):
construct (0, CUT, B)):
/* as the cdr bit
CP);
N);

N = memread(E - 1);
CP = memread(E - 2)};
E = memread(E - 4);

8. Get Instructions

8.1. Get Variable

March 1, 1989

/* record the CUT bit */
of B in the environment */

-17 -

get_variable ()
{
if (ADDRESS == Yi) {
memwrite (E + argl, Alarg2?]);
} else {
Alargl] = Alarg2];

8.2. Get Value

get_value ()
{
if (ADDRESS == Yi) {
t0 = memread(E + argl);
} else {
t0 = Afargl);
}
tl = Alarg2};
if (tag(t0) == VAR) t0 = dereference (t0);
if (tag(tl) == VAR) tl = dereference(tl):
if (ADDRESS != Yi) Alargl] = tl;
unify (0, t1);

8.3. Get Constant

get_constant()

{
t0 = Alarg2]:;
if (tag(t0) == VAR) t0 = dereference(t0);

unify(t0, argl):;

8.4. Get Nil

get_nil ()

{
t0 = Afargl);
if (tag(t0) == VAR) t0 = dereference(t0):;
unify (0, NIL):

March 1, 1989

-18-

8.5. Get Structure

get_structure ()
{
t0 = Alarg2]:
if (tag(t0) == VAR) t0 = dereference(t0);
switch (tag(t0)) {
case CON:
case LST:
£ail();
return;
case VAR:
MODE = WRITE;
memwrite (t0, construct (STR, cdr(t0), H));
trail(t0);
memwrite (H, argl):;
H++
break;
case STR:
MODE = READ;
tl = memread(tO);
if (tl !'= argl) { /* 32-bit compare works because cdr bit */
/* is always clear on functor */
fail();
return;
}
S = value(t0) + 1;
break;

8.6. Get List

March 1, 1989

-19.

get_list()
{
t0 = Alargl];
if (tag(t0) == VAR) t0 = dereference(t0);
switch (tag(t0)) {
case CON:
case STR:
fail();
return;
case VAR:
MODE = WRITE;
memwrite (t0, construct (LST, ecdr(t0), RH)):;
trail (t0);
break;
case LST:
MODE = READ;
S = value(t0);
break;

9. Put Instructions

9.1. Put Variable

put_variable ()
{
if (ADDRESS == Yi) {
t0 = construct (VAR, 0, E + argl);
memwrite (E + argl, t0);
} else {
t0 = construct(VAR, 0, H));
memwrite (H, t0);
H++;
Alaxgl] = t0;
}
Alarg2] = tO;

9.2. Put Value

March 1, 1989

-20-

put_value ()
{
if (ADDRESS == Yi) {
Alarg2] = memread(E + argl):;
} else {
Alarg2) = Alargl];

9.3. Put Unsafe Value

put_unsafe_value()
{
t0 = memread(E + argl):;
if (tag(t0) == VAR) t0 = dereference(t0);
if (tag(t0) != VAR || value(t0) < value(E)) {
Alarg2] = t0;
return;
}
tl = construct (VAR, 0, H):;
memwrite(H, tl);
H++;
Alarg2) = t1;
memwrite (t0, tl);
trail (t0);

9.4. Put Constant

put_constant ()

{
Alarg2] = argl;

9.5. Put Nil

put_nil ()
{
Alargl] = NIL;

9.6. Put Structure

March 1, 1989

-21-

put_structure ()

{
MODE = WRITE:;
Afarg2] = construct (STR, 0, H);
memwrite (H, argl);
He+;

9.7. Put List

put_list ()
{
MODE = WRITE;
Alargl] = construct (LST, 0, H);

10. Unify Instructions
It is very important that before calling the general unify routine given below, that both arguments are
fully dereferenced.

March 1, 1989

unify (t0, tl)

{
/* t0 and tl must be dereferenced on entry */

Ll:
if (tag(t0) != VAR && tag(tl) != VAR) { /* neither is a VAR */
if (tag(t0D) != tag(tl)) {
fail ()
return;

}
if (tag(t0) == CON) {
if (value(t0) !'= value(tl)) {
fail ();
return;
}
if (value (PDL) == 0) return;
goto L2;
} else {
t2 = memread(t0):;
t3 = memread(tl):;
t0++;
tl++;
PDL++;
PDL1 [PDL] = tO;
PDLr [PDL] = t1;
t0 = t2;
tl = t3;
if (tag(t0) == VAR) t0 = dereference(t0);
if (tag(tl) == VAR) tl = dereference(tl);
gote 1L1;
}
} else if (tag(t0) == VAR && tag(tl) == VAR) { /* both are VAR */
if (value (t0) < value(tl)) {
memwrite (tl, construct(tag(t0), edr(tl), t0));
trail(tl);
} else {
memwrite (t0, construct(tag(tl), edr(t0), tl)):;
trail (t0);
}
} else { /* one is a VAR %/
if (tag(t0) == VAR) {
memwrite (t0, construct (tag(tl), edxr(t0), tl)):
trail (t0);
} else {
memwrite (tl, construct(tag(t0), edr(tl), t0));
trail(tl):;

}
if (value(PDL) == 0) return;
12: /* PDL is not empty */
t0 = PDL1[PDL];
tl = PDLx[PDL];
PDL-~;
t2 = memread(t0);

March 1, 1989

.23.

t3 = memread(tl);

if (edr(t2) == 1) {
if (tag(t2) == VAR) t2 = dereference(t2):;
t0 = t2;

}

if (cdr(t3) == 1) {
if (tag(t3) == VAR) t3 = dereference(t3);
tl = t3;

}

goto Ll;

10.1. Unify Void

unify void()
{
count = argl;
if (MODE == READ) {
Ll:
if (count == 0) return;
t0 = memread(S);
if (cdr(t0) == 1) {
if (tag(t0) == VAR) t0 = dereference(t0);
switch (tag(t0)) {
case CON:
case STR:
£ail ()
return;
case VAR:
MODE = WRITE;
memwrite (t0, construct (LST, cdr(t0), H));
trail (£0);
goto L2;
case LST:
S = value (t0);

}
count=-;
S++;
gote L1;

} else {

L2:

if (count == () return;
memwrite (H, construct (VAR, 0, H)):;
count=-;
B4+,
goto L2;

March 1, 1989

10.2. Unify Value

unify value ()

{
if (ADDRESS == Yi) ({
t0 = memread(E + argl):
} else {
t0 = Aflargl];

}
if (tag(t0) == VAR) t0 = dereference (t0):;

if (MODE == READ) {
tl = memread(S):;
if (cdr(tl) == 1) {
if (tag(tl) == VAR) tl = dereference (tl);
switch (tag(tl)) {
case CON:
case STR:
fail ()
return;
case VAR:
MODE = WRITE;
memwrite (tl, construct (LST, ecdr(tl), H)):
trail(tl);
goto L1;
case LST:
S = t1;
tl = memread(S):;

}
S++;
if (tag(tl) == VAR) tl = dereference(tl);
unify (0, tl);
return;
} elme {

Ll:
if (tag(t0) == VAR && value (t0) > value(H)) {

tl = construct(VAR, 0, H):;
memwrite (B, tl);
memwrite (t0, tl);
trail(t0);

} else {
memwrite (H, construct (tag(t0), 0, t0)):
/* make sure cdr bit is cleaxr! */

/* clearing cdr is OR~--on stack */

B4+,

The PLM compiler produces the instruction, unify_ unsafe_value. For execution by the
VLSI-PLM, this instruction should be replaced with unify_value (the assembler could do this).
In write mode, if the argument of unify value dereferences to an unbound variable on the

stack, then it would be wrong for this to be simply copied to the top of the heap (since a variable link would
then point upwards). Instead, a new unbound variable is created on the heap and is bound to the variable

March 1, 1989

.25

on the stack, the binding is trailed if necessary. Thus, our unify value is Warmen's
unify local_ value.
There is no version of unify value without the check for an unbound variable on the stack

because one can never tell at compile time whether the check can be safely eliminated. The following code
illustrates this point.

main := a(X), d(X), e, write(X), nl.

a(Y) = c({X,Y), b(X).

b().

c(X, [X]). % called from a/l with X set to unbnd var on stack
d({x]).

e :- b(X), b(X).

10.3. Unify Variable

March 1, 1989

-26-

unify variable()
{
if (MODE == READ) {

t0 = memread(S);
if (cdr(t0) == 1) { /* S points to cdred data */

if (tag(t0) == VAR) t0 = dereference(t0);
switch (tag(t0)) {
case CON:
case STR:
fail ()
return;
case VAR:
MODE = WRITE;
memwrite (£t0, construct (LST, cdr(t0), H)):;

trail (t0);
goto Ll1;
case LST:

S = value (t0);
t0 = memread(S);

}
S++;
if (tag(t0) == VAR) t0 = dereference (t0);
if (ADDRESS == Yj)
memwrite (E + argl, t0);
else
Alargl] = tO0;

} else { /* MODE == WRITE */
L1l:
t0 = construct (VAR, 0, H):;
memwrite (H, tO0);
H++;
if (ADDRESS == Yi)
memwrite (E + argl, t0);

/* push unbound var on heap */

else
Alargl] = tO;

10.4. Unify Constant

March 1, 1989

.27

unify constant ()

{
if (MODE == READ) ({
t0 = memread(S);
if (cdr (t0) == 1) {
if (tag(t0) == VAR) t0 = dereference (tO0);
switch (tag(t0)) {
case CON:
case STR:
fail () ;
return;
case VAR:
MODE = WRITE;
memwrite (t0, construct (LST, ecdr(t0), H)):;
trail (t0);
goto Ll1;
case LST:
S = value (t0);
t0 = memread(S);

}
S++;
if (tag(t0) == VAR) t0 = dereference (t0);
unify(t0, argl);
return;
} else { /* MODE == WRITE */
1i:
memwrite (K, argl):
B++;

10.5. Unify Cdr

March 1, 1989

-28-

unify_ ecdr ()

{
if (MODE == READ) {

t0 = memread(S);
if (cdr(t0) == 0) t0 = construct (LST, 0, S);
} else {
t0 = construct (VAR, 1, H):;
memwrite (H, t0);
H++;
}
if (ADDRESS == Yi) ({
memwrite (E + argl, tO0);
} else {
Alargl] = t0;

10.6. Unify Nil

unify nil ()

{
if (MODE == READ) {

t0 = memread(S);

if (cdr (t0) == 0) {
fail ()
return;

}
if (tag(t0) == VAR) t0 = dereference(t0):;

unify (t0, NIL):;
return;

} else {
memwrite (H, construct (CON, 1, NIL)):;

H++;

11. VLSI-PLM Specific Instructions

11.1. Deref

deref ()

{
t0 = Alargl]:;
if (tag(t0) == VAR) t0 = dereference (t0);

Alargl) = t0;

March 1, 1989

-29.

11.2. Add
add ()
{
t0 = Afargl};
tl = Alarg2];
Alarg2] = construct (CON, 0, t0 + tl);
}
11.3. Sub
sub ()
{
t0 = Alargl};
tl = Alarg2):;
Alarg2] = construct (CON, 0, tl - t0);
}
11.4. Mult

Multiply does an unsigned multiply of two 27-bit integers to produce a 27-bit result. If the result
requires more than 27-bits, then an overflow is indicated by setting the answer to the constant NIL. To
count the number of iterations, one is shifted left 27 times.

mult ()
{
multiplier = Aflargl]:;
multiplicand = Alarg2];
accum = 0;
ent = 1;
Ll:
accum = accum << 1;
if (accum & 0x08000000 == 1) goto ovrilw;
multiplier = multiplier << 1;
if (multiplier & 0x08000000 == 1) {
accum = gccum + multiplicand;
if (accum & 0x08000000 == 1) gote ovrflw;
}
ent = ent << 1;
if (ent & 0x0B000000 == 0) goto Ll;
Alarg2] = construct (CON, 0, accum);
return;
ovrflw:

Alarg2] = NIL;
return;

March 1, 1989

11.5. And
and ()
{
t0 = Alargl];
tl = Alarg2}:;
Alarg2] = t0 & tl;
}
11.6. Or
or ()
{
t0 = Alargl]:
tl = Alargl):;
Alarg2] = t0 | tl;
}
11.7. Eor
eor ()
{
t0 = Alargl}:;
tl = Alarg2);
Alarg2] = t0 = t1l;
}
11.8. Memread
memread ()

{

Alarg2) = memread(A[argl] + azrg3):;

}

11.9. Memwrite

memwrite ()

{

memwrite (A[argl] + arg3, Alarg2)):

}

-30-

March 1, 1989

/* 32-bit operation !! */

/* 32-bit cperation !! */

/* 32=bit operation !! */

-31-

11.10. Coderead

coderead ()

{
A7) = coderead(Afargl]l):

}

11.11. Codewrite

codewrite ()

{
codewrite (A[argl], A[7]);

}

11.12. Jump
Same as execute, except that the CUT bit is not affected.

Jump ()
{

P = argl;
}

11.13. Mt

31t ()

if (value(Alargl]) < value(A[arg2])) P = P + arg3;

11.14. Jeq

Jeq ()
{

if (Alargl] == A[arg2]) P = P + arg3; /* 32-bit equality!! */
)

1115, Jle

Jle ()

if (value(Alargl])) <= value(Alarg2])) P = P + arg3;

March 1, 1989

.32-

11.16. JumpXn

Jumpxn ()
{
P = Alargl]);
}
11.17. LoadN
loadn ()
{
N = argl;

12. Test Programs

The following test programs at one tme were not comectly executed due to microcode bugs. They
all now work correctly on the VLSI-PLM (bowever, some versions of the PLM levell, PLM level2, and
PPP levell simulators have not been corrected). The programs are given here as test cases for new simula-
tors and PLM implementations.

12.1. Dereferencing
Check dereferencing of arguments in general unify:

main :- a(X), a(¥Y), b(X,Y), c¢(X), d(X,Y), write(Y), nl.

a([s,a])). % create 2 list on the heap with a variable in it
b([AI_),[AI_]). % bind the two variables together
c(fal_l). % bind a constant to the variables

% at this point one list has a constant as its first element
% and the other has a variable bound to a constant

d(A,A). &% this uvnification should succeed
% fails here if variables not deref’d in unification

122. Cdr Bits
Check that NIL, when used as a constant, does not have its cdr bit set:

main :- a([[],[]},[A,B)), write(A), nl, write(B), nl.
a(X,X).

Another check on the constant NIL:

March 1, 1989

-33-

main :- write([x,[]]), nl.

Test that cdr bit stays the same during variable binding:

main :- A = [x|X], B= [x,¥Y], X=Y, Y= a, write(x(A,B)), nl.

Test cdr links:
main :- a{[A)), X = [alY], Y = [b|A]), b(X), write(X), nl, fail.
main :- a([A}), X = [alY]}, Y = [Db|A), A= [c], Db(X), write (X), nl, fail.

a(_).
b([A,B,C]) :~ a([A,B,C]}.

Another test of cdr links:

[b|X), X = [c)], b(A), write(A), nl, fail.
[bIX], b(A), write(A).

main :- a([X]), A = [alY], Y
main :- a([X)), A = [alY]}, ¥
a(_).

b([X,Y,2)) :- a(X), a(Y), a(Z).

Check that the cdr bit of an unbound variable is preserved by get_structure:

main :=- write([alb(x)]), nl.
Check decdring in general unify:
% from Chien Chen
main :- a(A), b(B), c(A, B), d(A).
a([alX]).
b([a] foo(b,c)]).

c(X, X).
a([_i%]) := e(X, foo(b,c)).

Check that the cdr bit is cleared before writing to the beap in unify_value (write mode):

& from Barry Fagin
main :~ a([BIT]), X = Y=-T, foo(X), write(X).

a(_).
foo (X~X) .

Test unify_void:

March 1, 1989

-34-

main := y(A), write(a),
z(A,2), write(b),
a({X,Y¥|2)), write(c),
z(M,L), write(d),
z(M, [a)), write(e),
a([all]).

a(l{_,_,_1.

y(A).

z(A,A).

12.3. Unsafe Variables
Test comparison for current environment in put_unsafe_value:

main :- a(X), a(¥), b(X,Y), c(X,Y). % this just causes to put_unsafe'’s
% but one does not transfer pointer to heap
a(x).
b(X,%).
c(X,Y) :~ d(X,Y), e. % ‘e’ is just to force an allocate
d(X,Y) := a(X), a(¥Y), £(X,Y), e. % another allocate that destroys
% pointer for X and Y
e.
f(a,a). % this should succeed

Test put_unsafe_value when two variable are bound together in the current environment (the
end of the vanable chain must be changed to point to a newly created unbound variable on the heap):

¥ from Jeff Gee:
n :- a(X,Y),b(Y),write (X),nl.

a(Vv,V).
b(joe).

Check that unify_value does unsafe variable globalization in write mode:

main :- a(X), d(X), e, write(X), nl.

a(¥) := c¢(X,¥), b(X).

b(_).

e(X, [X)). % called from a/l with X set to unbnd var on stack
d([x])).

e :- b(X), b(X).

Test that the overvwritten variable on the stack in unify_value (write mode) is trailed.

March 1, 1989

-35.

main :- a(X,Y), b(2), e(X,Y), d(2).
a(X,X).

b([)).
b([a,b,cl).

c(X,Y) := var(X), !.
c(X,Y) :- write(’/**x*x BUG ***’')} nl.

da(l_t_1).

12.4. Detrailing
Test that multiple setargs (to the same location) are untrailed properly:

main :- X = a(a), b(X), fail.

b(X) :- write(X), nl,
setarg(l, X, b), write(X), nl,
setarg(l, X, c), write(X), nl.
b(X) :~ write(X), nl.

13. Suggestions for Future Instruction Sets

13.1. Eliminate Cdr coding
Cdr coding has been shown not to yield any performance advantage [ToDe], and it complicates the
microcode. Many of the last bugs to be removed from the VLSI-PLM microcode where related to cdr cod-

ing.

13.2. Eliminate Unsafe Variables

Unsafe variables have also been the source of several bugs. By changing put_variable Yi
to create an unbound variable on the beap and a pointer to it in the environment, unsafe variables are elim-
inated. The benefits include elimination of the put_unsafe_value instruction, simplification of the
trail routine (one comparison rather than three), and simplification of unify_ value in write mode. The
drawbacks include ap extra dereference link and the creation of more garbage on the heap. The highly
recursive Takeuchi function (see Gabriel’s lisp benchmarks) is an example of the second drawback:

March 1, 1989

-36-

main :- tak(18,12,6,A), write(A), nl.

tak(X,Y,2,A) :-
X =<Y, !,
Z = A,
tak(X,Y,Z,7) :-
X1l is X-1,
tak (X1,Y,2,Al1),
Yl is Y-1,
tak(¥1l,2,X,A2),
21 is 2-1,
tak (21,X,Y,A3),
tak (Al,A2,A3,A).

In the VLSI-PLM the variables Al, A2, and A3 are allocated on the stack, and the heap is never used.
However, if the these variables are allocated on the heap, 47,706 words are required.

14. Acknowledgements

Thanks to all who contributed to debugging the VLSI-PLM microcode. Special thanks to Tep
Dobry, Barry Fagin, Jeff Gee, Chien Chen, Peter Van Roy, Mike Carlton, Jerric Tam, and Vason Srini.

Many of the descriptions given above are derived from electronic mail discussions and I would like
to thank those that contributed.

18. References

[Dob] Dobry, T., A High Performance Architecture for Prolog, Ph.D. Thesis, Report No. UCB/CSD
87/352, University of California, Berkeley, May 1987.

[FaDo] Fagin, B. and T. Dobry, The Berkeley PLM Instruction Set: An Instruction Set for Prolog,
Report No. UCB/CSD 86/257, University of California, Berkeley, September 1985.

[ToDe] Touati, H., A. Despain, An Empirical Study of the Warren Abstract Machine, 4th Symp. on
Logic Programming, 1987.

[War] Warren, D. H. D., An Abstract Prolog Instruction Set, Technical Note 309, SRI, October 1983.

March 1, 1989

